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High-Frequency Shear Modulus and Relaxation Time
of Soft-Sphere and Lennard–Jones Fluids

E. Keshavarzi,1 M. Vahedpour,1 S. Alavi,2,3 and B. Najafi1
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The high-frequency shear modulus, G∞, and shear relaxation time, τshear, are
obtained using the Zwanzig–Mountain equation for soft-sphere and Lennard-
Jones potentials. The Hansen and Weis soft-sphere radial distribution func-
tion and the Matteoli–Mansoori Lennard-Jones radial distribution function
are used in the equation. The shear relaxation times of different isotherms
for both of these fluids pass through a minimum at a reduced density of
about 0.7, which indicates a change from fluid-like behavior to viscoelastic
behavior. The origins of this common density point are discussed. It is also
shown that for the Lennard-Jones fluid, if the ratio of the reduced relaxation
time to a power of the reduced temperature is plotted as a function of the
reduced density, all isotherms become superimposed on a single curve.

KEY WORDS: Lennard-Jones fluid; radial distribution function; shear
modulus; shear relaxation time; soft-sphere fluid.

1. INTRODUCTION

Transport properties involve the flow of some quantity within a fluid sys-
tem. Namely, viscosity involves the flow of the linear momentum, thermal
conductivity the flow of thermal energy, and diffusion the flow of material
in a mixture. This flow can result from local fluctuations inside an equilib-
rium system or from external driving forces in nonequilibrium systems [1].

In dilute-gas transport processes, the quantity being transported, such
as linear momentum or energy, is carried by the individual molecules. For
an ideal gas at thermal equilibrium, the distribution of molecular veloc-
ities is given by the Maxwell distribution law. In nonequilibrium states,
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the velocity distribution deviates from the Maxwell distribution, and the
deviations are responsible for irreversible transport processes. If the devi-
ation from the Maxwell distribution is known or can be calculated, the
transport coefficient can be obtained. This is the basis of the Chapman–
Enskog procedure [2] for deriving low-density transport coefficients for
gases. The deviation from the Maxwell distribution is generally small when
the system is not too far from equilibrium. If there is an external driv-
ing force, such as Poiseuille flow or a temperature gradient that prevents
the attainment of equilibrium, the actual velocity distribution will be a
compromise between the effect of this external influence and the rate with
which collisions restore the Maxwell distribution [3]. The latter process can
be characterized at each density and temperature by a “relaxation time,”
the calculation of which can be used to predict the transport coefficients.

The objective of this paper is to investigate the general behavior
of the infinite-frequency shear modulus and shear relaxation time for
soft-sphere (SS) and Lennard-Jones (LJ) fluids. The fundamental ideas
originate with the Maxwell shear relaxation time, τ , that is defined as

τ = η

G∞
, (1)

where η and G∞ are the shear viscosity and high-frequency shear modu-
lus, respectively.

When a mechanical force is suddenly applied to a fluid, the fluid
initially responds elastically, as if it were a rigid, solid body. The initial
response may be described by two quantities, the high-frequency limit of
the shear modulus (or modulus of rigidity), G∞, and the high frequency
limit of the bulk modulus K∞ (or modulus of compression).

Using a simple hydrodynamic model in which the molecule is regarded
as a sphere rotating in a continuous viscous medium, Debye [4] found that
the molecular relaxation time τ should be linearly dependent upon the vis-
cosity η of the medium. Other workers [4] have proposed modified rela-
tionships, which are either based upon theoretical models or are purely
empirical. Some of the empirical equations are quite successful in pre-
dicting the magnitude of relaxation times at room temperature for several
polar liquids (such as nitrobenzene), which have viscosities in the range of
0.3–200 cP (1 cP = 10−3 Pa·s). However, but most empirical relations retain
the linear dependence of τ upon η which is generally not observed. Hanley
et al. [5], Hess and coworkers [6–8], and Mountain and Zwanzig [9] used
radial distribution functions in the theoretical expression for the relaxa-
tion time, and van der Gulik [10] used the thermal pressure to calculate
the shear relaxation time. Hill [11] obtained a theoretical relationship by
beginning with Andrade’s theory of viscosity and extending it to the case
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of mixtures of liquids. From this she extracted a local viscosity that acts
between species at the molecular level. The relaxation time depends upon
this “mutual viscosity.”

The shear viscosity relaxation time can be used to determine the elas-
tic behavior (fluid-like or solid-like) of matter. The resistance to flow in
fluids is characterized by the shear viscosity, and the elastic deformation
in solids is characterized by the shear modulus. Intuitively, fluids readily
flow under stress while solids do not. However, for short observation time,
fluids may show elastic behavior. Similarly, for long observation time, sol-
ids may exhibit flow behavior. Whether a material flows or not depends
on the dimensionless ratio (τ/t), which is called the Deborah number [12,
13], where t is the observation time (characteristic time scale of the flow)
and τ is an average stress relaxation time of the material which is given
by Eq. (1). If t � τ , flow is not observed and the system exhibits solid-
like behavior and satisfies Hooke’s law. If t � τ , flow is observed and the
system exhibits fluid-like behavior and satisfies Newton’s law of viscosity.
For t ≈ τ , a material will show both elastic deformation and flow and is
called viscoelastic. Viscoelastic behavior is commonly observed in polymer
systems.

In our approach, we obtained expressions for the shear modulus G∞
which are used to study the behavior of the relaxation time τ for SS and
LJ supercritical fluids. It was observed that the variation of the relaxa-
tion time with density passes through a minimum at a reduced density
ρ∗ ≈0.65 for argon and 0.7 for LJ and SS fluids. This trend may be attrib-
uted to a change from fluid-like to viscoelastic behavior in the supercritical
region.

In Section 2 of this paper, we study the temperature and den-
sity dependence of the shear modulus for the SS potential. The shear
relaxation time is determined from the shear modulus and values of the
viscosity of the SS fluid. In Section 3, the density and temperature depen-
dence of the shear modulus of a LJ fluid are determined. Viscosity values
for the LJ fluid and argon are used to calculate the shear relaxation times
of these two fluids. The paper ends in with a summary and discussion in
Section 4.

2. CORRELATION FUNCTIONS FOR THE INFINITE-FREQUENCY
SHEAR MODULUS AND RELAXATION TIMES
OF SOFT-SPHERE FLUIDS

Zwanzig and Mountain [14] have derived the relation between the
infinite-frequency shear modulus G∞ and the radial distribution function
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(RDF) for fluids interacting with a spherically symmetric potential,

G∞ =ρkT + 2π

15
ρ2

∞∫
0

g(r)
d

dr

[
r4 d�(r)

dr

]
dr, (2)

where g(r), �(r), and ρ are the radial distribution function, intermolecu-
lar pair potential, and density, respectively, and kT has its usual meaning.

2.1. Shear Modulus for the Inverse Power Potential

A repulsive inverse power potential of order n is written as

�=4ε
(σ

r

)n

, (3)

where σ is an effective radius and ε is the energy factor. Substituting the
derivatives of � in the expression for G∞ gives

G∞ =ρkT +4n(n−3)εσ 2ρ2 2π

15

∞∫
0

g(r)
(σ

r

)n−2
dr. (4)

Heyes and Aston [15] demonstrate that the integral in Eq. (4) (and there-
fore G∞) is infinite for a hard sphere potential with n→∞. However, this
integral is finite for the soft-sphere repulsive potential with n=12 and can
be solved numerically for this important case.

It has been demonstrated [16–18] that the partition function and
therefore, some thermodynamic properties of a SS fluid scale with a sin-
gle variable, x =ρσ 3(ε/(kT ))3/n. Hansen and Weis [16] have tabulated g(r)

for the SS fluid with n = 12 as a function of x. We have solved Eq. (4)
numerically for G∗∞ =G∞σ 3/ε at several thermodynamic states using the
SS potential and g(r) from Ref. 16. Figure 1 shows G∗∞ as a function of
the reduced density ρ∗ =ρσ 3 for four isotherms. The scaling properties of
the RDF suggest that by combining the reduced variables G∗∞, ρ∗, and
T ∗ =kT /ε, we can define

y ≡ G∗∞ −ρ∗T ∗

ρ∗2
=4n(n−3)

2π

15

∞∫
0

g(r)
(σ

r

)n−2
d

( r

σ

)
. (5)

The quantity y is proportional to the integral of Eq. (5) which scales with
x. Therefore, it is possible to express y as a function of x for different
thermodynamic states. The data for several isotherms can be summarized
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Fig. 1. Reduced soft-sphere shear modulus, G∗∞ = G∞σ 3/ε,
as a function of reduced density for several isotherms.
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Fig. 2. Dimensionless variable y defined in Eq. (5) as a
function of x. Molecular dynamic results (�) of Heyes [19]
are also given.

in a single curve by plotting the shear modulus in the form of y as a func-
tion of x. In Fig. 2 we show the good agreement between the results of
Eq. (5) and the SS potential molecular dynamic simulations of Heyes [19].

The dependence of the variable y on x can be fit to the following
functional form:

y =−1.6126+7.5828e2.1429x. (6)
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This form is valid in the range of 0.253 <x < 0.854 which is the range of
the data for g(r) given in Ref. 16. With this simple functional form, G∗∞
can be calculated for different values of ρ∗ and T ∗. The mean and max-
imum percent error for this fitting function are 0.48 and 1.14%, respec-
tively.

2.2. Soft-Sphere Relaxation Time

With numerical integration of Eq. (5) or use of the functional form
given in Eq. (6), G∗∞ for the SS potential can be calculated and it becomes
possible to determine the shear relaxation time. To do this, we use Eq. (6)
for G∗∞ and the Ashurst–Hoover [20] expression for reduced shear viscos-
ity, η∗ = ησ 2/(mε)1/2 of a soft sphere fluid. The Ashurst–Hoover expres-
sion for shear viscosity of a SS fluid in reduced form is

η∗ =0.171+0.022∗T ∗2/3
(
e6.83x −1

)
. (7)

Substituting Eqs. (6) and (7) in Eq. (1), the reduced shear relaxation time
for the soft sphere fluid can be calculated. The reduced shear relaxation
time τ ∗

shear, is defined as

τ ∗
shear = τshear

σ(m/ε)1/2
. (8)

The reduced shear relaxation times as a function of reduced density for
three isotherms are plotted in Fig. 3, where it is seen that all isotherms
pass through a minimum. The origin of this minimum is discussed in
Section 4.

3. CORRELATION FUNCTION FOR THE SHEAR MODULUS
AND RELAXATION TIME OF LENNARD–JONES FLUIDS

There are several semiemperical and analytical expressions for the
shear modulus and viscosity for LJ fluids [19,21–23], but there are few
data and no unique formula for the predicting the relaxation times.

3.1. LJ Shear Modulus

To obtain the shear modulus for the LJ potential, the integral in
Eq. (2) is evaluated numerically using the RDF of pure LJ fluids given by
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Fig. 3. Reduced shear relaxation time for a SS fluid as a
function of the reduced density for several isotherms.

Matteoli and Mansoori [24]. Their expression is

g(y) = 1−y−m[g(d)−1−λ]+ [(y −1+λ)/y]

×{exp[−α(y −1)] cos[β(y −1)]}, m�1, y �1 (9)

g(y) = g(d) exp[−θ(y −1)2], y <1,

where y = r/d is the dimensionless intermolecular distance, d is the loca-
tion of the maximum of the first peak in the radial distribution function,
and h=d/σ,m,λ,α,β, θ, and g(d) are adjustable parameters. This expres-
sion for g(r) is valid in the range of 0.25 <ρ∗ < 0.95 and 1.35 <T ∗ < 3.7.
Hence, the calculated G∗∞ will be accurate in this region.

Figure 4 shows G∗∞ for LJ fluids obtained from numerical solution
of Eq. (2). Molecular dynamics (MD) results for LJ fluids [19,21] for two
isotherms are also shown. The agreement between our predictions and the
MD results is acceptable.

For practical purposes, it is convenient to fit the calculated G∗∞ in the
reduced density range of 0.25�ρ∗ �0.95 and reduced temperature range
of 1.35�T ∗ �3.7 to a functional form. The following form was used:

G∗
∞ =−0.6848+ (4.0478+13.1041T ∗)ρ∗1.7973+(41.084−5.5881T ∗)ρ∗3.5814,

(10)

where the adjustable parameters are obtained by a least-squares fitting
method. The maximum relative percent error and the average relative per-
cent error of this correlation for 100 points are 5.5 and 1.6%, respectively.
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Fig. 4. Comparisons of the infinite-frequency shear modu-
lus for the LJ fluid using the numerical solution of Eq. (2)
and MD calculations for T ∗ =1.9(�) and T ∗ =2.7(•) for two
isotherms.

3.2. LJ Shear Relaxation Time

To obtain the shear relaxation time of LJ potentials, we use the ana-
lytical expression for reduced shear viscosity of LJ (supercritical) fluids
given by Rowley and Painter [25]

η∗ =η∗
0 exp


 4∑

i=1

6∑
j=1

bji

ρ∗i

T ∗j−1


 , (11)

where η∗
0 is the reduced Chapman–Enskog low density viscosity,

η∗
0 = 5

16

√
T ∗

π


 5∑

j=1

ωjT
∗j−1




−1

, (12)

and adjustable parameters bji and ωj are given in Table I. This equation
spans the range of 0�ρ∗ �1.0 and 0.8�T ∗ �4.0.

The reduced relaxation time for LJ fluids may be obtained from the
reduced form of Eq. (1)

τ ∗ = η∗

G∗∞
, (13)

where η∗ is substituted from Eq. (11) and G∗∞ from numerical solution of
Eq. (2). In Fig. 5 the reduced shear relaxation time of a LJ fluid is plot-
ted as a function of the reduced density for three isotherms. The relaxa-
tion times go through minima at ρ∗ ≈ 0.7 for all isotherms. The presence
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Table I. Constants used in Eqs. (11) and (12) to Calculate the Shear Visco-
sity for LJ Fluids [25]

j bj1 bj2 bj3 bj4 ωj

1 −7.53814 36.0319 −47.0432 19.7791 2.8745
2 66.0342 −299.373 430.291 −191.670 −2.0265
3 −220.881 1067.97 −1575.25 725.006 0.1958
4 334.883 −1638.92 2445.08 −1140.09 −0.1960
5 −226.756 1112.30 −1669.43 783.084 0.0160
6 52.4394 −255.199 380.704 −176.589 –
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Fig. 5. Reduced shear relaxation time versus reduced density
for three isotherms of LJ fluid.

of a common minimum is attributed to the unusual behavior of viscos-
ity versus density isotherms in the supercritical region [25]. In the super-
critical region, different viscosity isotherms intersect at a common density
where the viscosity of the gas is independent of temperature. This behav-
ior is shown in Fig. 6. The density of intersection point is about twice the
critical density [26]. By comparing the density of the minima of Fig. 5 and
the density of the common point in Fig. 6, it is observed that these two
densities are very close to one another.

For practical applications, it is convenient to have an analytical
expression for the density and temperature dependence of the shear relaxa-
tion time. Figure 5 shows that the general form of the τ ∗–ρ∗ isotherms are
similar, and therefore the isotherms have a common functional dependence
on temperature. Using a least-squares method, the reduced relaxation time



1756 Keshavarzi, Vahedpour, Alavi, and Najafi

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5
1.5

*

*

*

T

2.5*T

3.5
*T

η

ρ

=

=

=

Fig. 6. Common point of the shear viscosity Lennard-Jones
fluid for three isotherms, T ∗ = 1.5 (—), T ∗ = 2.5 (– –), and
T ∗ =3.5 (–·–).

of the LJ fluid can be fit to the following functional form:

τ ∗

T ∗−0.3717
= 0.859−5.5849ρ∗ +16.6395ρ∗2 −25.4717ρ∗3 (14)

+ 19.5756ρ∗4 −5.9341ρ∗5,

which is valid over the reduced density range of 0.25 < ρ∗ < 0.90 and
the reduced temperature range of 1.5 < T ∗ < 4.0. Equation (14) is plot-
ted in Fig. 7 along with shear relaxation times calculated from viscosity
points determined by MD simulations [25]. The MD points from differ-
ent isotherms fall very close to the single curve. The discrepancies in the
high-density range may be attributed to the inaccuracies of the MD vis-
cosity results [25]. The maximum and average relative percent errors of
Eq. (14) are 4.9 and 1.7%, respectively. This correlation provides an ana-
lytical expression in terms of ρ∗ and T ∗ for the shear relaxation time.

Using molecular dynamics methods, Mountain and Zwanzig [9]
reported that the order of the relaxation time for simple liquids is 10−13 s.
This order of magnitude is consistent with our results. van der Gulik
used thermal pressure to calculate the relaxation time for noble gases [10].
Although there is no strong indication that his methods will necessarily
give the same relaxation time as obtained in this work, it is reassuring to
see that the order of magnitude of the relaxation times are indeed identi-
cal for the case of argon and krypton given in Table II.
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Fig. 7. Reduced relaxation time-temperature ratio as a func-
tion of reduced density for LJ fluids from Eq. (14) for T ∗ =
2.5 (—) and from MD simulations [25] for isotherms T ∗ =
1.5(�), T ∗ =3.5(◦), and T ∗ =4(�).

Table II. Comparisons of the Shear Relaxation Time using Eq. (14) for LJ Fluids and Eqs.
(6) and (7) for SS Fluids with Experimental Values for Ar and Kr [10] where ρ∗ =ρσ 3 and

T ∗ =kT /ε

ρ∗ T ∗ τ(ps)a τ (ps)SS τ(ps)LJ

Ar 0.511 2.493 0.47 0.27 0.11
0.607 1.411 0.98 0.28 0.12
0.623 1.131 2.2 0.29 0.13
0.671 1.009 2.2 0.31 0.13
0.767 0.863 2.1 0.38 0.14

Kr 0.652 1.697 0.79 0.37 0.14
0.652 1.830 0.72 0.37 0.14
0.683 1.565 0.89 0.39 0.15

Molecular Parameter Ar Kr Molecular Parameter Ar Kr
σ 0.335 nm 0.3572 nm ε/k 143.23 201.35

a From van der Gulik [10].

3.3. Relaxation Time for Argon as a Real Fluid

It is possible to consider argon as an example of a LJ fluid and to
use Eq. (10) to predict its infinite shear modulus. Evaluation of relaxa-
tion time via Eq. (13) would then require an analytical expression for the
viscosity of argon at different temperatures and densities. An analytical
expression for the shear viscosity of supercritical fluids was presented in
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our previous work [26,27],

η=η0(1+NAσ 3B∗
ηρ)+Dη, (15)

where η0 is the Chapman–Enskog theory viscosity at zero density,

η0 = 5
16

(
mkT

π

)
fη

σ 2(2,2)∗(T ∗)
, (16)

m is the molecular mass, (2,2)∗(T ∗) the reduced collisional integral, and
fη is the correlation factor [27]. Bη and Dη are the second viscosity virial
coefficient and residual viscosity function, respectively, which are defined
in Ref. 26. This analytical expression for the shear viscosity of real fluids is
valid between 1.75<T ∗ <3.5 and 0<ρ∗ <0.991. The reduced shear relaxa-
tion time for argon calculated using Eqs. (10) and (15) is shown in Fig. 8a.
Figure 8a shows that for all isotherms, the relaxation time passes through
a minimum at ρ∗ ≈0.65. It is remarkable that the minimum density is only
weakly temperature dependent. The transition which gives rise to the min-
ima will be further discussed in Section 4.

Finally, we have fitted the calculated values of the shear relaxation
time of argon to the following correlation function:

τ ∗

T ∗−0.2915
= 0.7797−4.265ρ∗ +10.6098ρ∗2 −13.9324ρ∗3 (17)

+ 9.568ρ∗4 −2.5638ρ∗5.

The maximum and average relative percent error of this correlation func-
tion that were obtained from a least-squares method are 0.63 and 0.13%,
respectively. The reduced density and temperature range of Eq. (17) is
0.25 < ρ∗ < 0.95 and 1.75 < T ∗ < 3.5, respectively. Equation (17) has been
used to plot the relaxation time for three isotherms in Fig. 9, which shows
that the data points of the isotherms are superimposable on a single curve.

4. DISCUSSION

For soft spheres, the integral in the Mountain–Zwanzig expression
for the infinite-frequency shear modulus G∗∞ in Eq. (2) has been solved
numerically. For the soft-sphere potential, a corresponding states law for
G∗∞ in terms of the variable y ≡ (G∗∞ −ρ∗T ∗)/ρ∗2 as a function of the
variable x =ρσ 3(ε/kT )3/n was written. Our comparison with the MD [19]
results indicates the accuracy of this corresponding states behavior. Along
with the Ashurst–Hoover expression for shear viscosity, this allows the
derivation of an analytical expression for the shear relaxation time of SS
fluids.
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The shear modulus G∗∞ can also be determined numerically for the
LJ potential by using the Matteoli–Mansoori RDF [24] and integration
of Eq. (2). Our comparison with the MD results indicates the accuracy
of this approach. Using Eq. (10) and an appropriate form for the shear
viscosity over a wide temperature–density range, the shear relaxation time
can be fit to an analytical function of temperature and density. It was
shown in Fig. 7 that isotherms of the reduced relaxation time become
superimposed on a single curve when plotted as a function of the reduced
density in the form of Eq. (14).

In Figs. 3 and 7, the shear relaxation times for supercritical isotherms
(1.75<T ∗ <3.5) of SS and LJ fluids pass through a minimum at ρ∗ ≈0.70.
For the LJ fluid, a corresponding states law for the reduced relaxation
time can be written (see Eq. (14)). This behavior of the relaxation time of
LJ fluids can be attributed to the unusual “common density point” behav-
ior of viscosity versus density seen in supercritical isotherms [27]. At high
densities, the viscosity–density isotherms of gases generally intersect at a
common point [27], (with density of ρcom) at which the viscosity of the
gas becomes independent of temperature (see Fig. 8b). This common point
occurs at ≈2ρcrit, where ρcrit is the critical density of the gas. The reduced
critical density of Lennard–Jones fluids is 0.35 (for argon ρ∗

crit =0.32) [28],
therefore twice the reduced critical density is close to 0.70. At densities
greater than ρcom, the viscosity of gases decreases with increasing tempera-
ture, a behavior similar to that observed in liquids. Figures 8a,b show that
the density of the minimum in the relaxation time and the common inter-
section point coincide closely.

In dilute gases, the most important mechanism for transporting
momentum between layers of flowing fluid is the kinetic contribution. As
the density of the fluid increases, the mean free path becomes shorter,
and the total intermolecular potential on each particle becomes larger.
At densities higher than the common point density, “collisional trans-
fer” becomes the principle mechanism of viscosity [2,3,27] rather than the
kinetic transfer, and therefore, the fluid behavior resembles that of liquids.
The dominant mode of momentum transfer changes as the dense fluid
passes through the common point density.

Both the viscosity and the shear modulus increase monotonically with
temperature, but with different slopes; see, for example, Figs. 4 and 6.
However, as seen from the result of Eq. (13) plotted in Fig. 8a, the relax-
ation time, which is the ratio of the viscosity and shear modulus, goes
through a minimum. At densities lower than the common-point density,
viscosity is dominated by the mean free path (dilute vapor behavior) mech-
anism, and kinetic transport and the rate of increase of the viscosity
is not sufficient to overcome the rate of increase of the shear modulus.
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Therefore, the relaxation time decreases with density. At densities larger
than the common-point density ρcom, the viscosity is dominated by col-
lisional transfer (liquid-like behavior), which increases with density at a
sharper rate than before, and as a result, the relaxation time begins to
increase with density. The density of the minimum point is very close to
the density of the common point which was reported in Ref. 27 to be
about twice the critical density.

The minimum in the shear modulus can be interpreted from another
point of view. We may describe the behavior of the relaxation time of a
fluid in terms of the deformation of the fluid and its available transla-
tional states. At lower densities (ρ∗ < 0.70), fluids show gas-like behavior,
and even a very small force will be quickly transferred to the molecules
and elastic deformation in the fluid is not observed. In this density region,
the fluid is Newtonian and does not have memory of the deformation
and cannot recall its previous shape. Hence, we conclude that translational
states have a dominant role in the relaxation time in the gas-like region,
so in this region energy and momentum of molecules easily distribute in
translational states and this causes a decrease of the relaxation time.

In the dense region (ρ∗ >ρ∗
com ≈0.70), the fluid is viscoelastic and its

behavior is influenced by finite memory effects which increase with density.
The mechanism of the relaxation becomes similar to that in solids which
have infinite memory on deformation and satisfy Hooke’s law. An elas-
tic solid will always recall its previous shape and relaxation is difficult to
achieve. We may conclude that for densities greater than 0.70, the role of
the memory effects are the dominant factor in comparison with accessible
translational states and this causes an increase in the relaxation time. We
are also able to predict the density where the momentum transfer mode
goes from gas-like behavior to liquid-like behavior.
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